BASIC
COMPILER

FROM
ADVANGED SOFTWARE

FOR THE TI 99/4A COMPUTER

REQUIRES EXTENDED BASIC
AND MEMORY EXPANSION

TR T

TR Y

5 e iy &

5.

6.

CONTENTS

Page
TITTRUDUCIEIORT o« vis ttivmmns wasinedans ssows | 1
YARTABLES oy conmneisagiasiosssnavssonse 19
L 0T e PR, S e g L Dy .
COMPOREIG" oo 0a sstspvenaniiesssswvasess 19
il 1 STRRT R SR SR RN
GRABIICS os sv siwinin s o aigsoimnies oo goxptiin - L0
EXAMPLES::..........;........;;4 19

APPENDIX ®essecccesscsneescssrenee e 22

. TSI - - Ty T
o S " ¥ - T

RN T

INTRODUCTION -

! Most TI 99/4A users are confronted with two
alternatives when writing programs. - On one - hand,
programming in BASIC is Ttelatively simple and” :

) ~ graphics and sound are easily accessible. As 1is i

well known, however, the resulting graphics are il
much slower than arcade type action. On the b
other hand, programming jn ASSEMBLY solves the |
problem of speed, but learning the language &
jtself is difficult and programming in it can. be '
frustrating and time consuming.

The graphics of BASIC are slow due mainly to
the fact that when the program is running, the
computer must read each statement, interpret it,
check it for errors, and then, finally, call the
neccesary built-in subroutines to execute it..
The built-in program that does all of this is
called a BASIC INTERPRETER. :

Writing a program in ASSEMBLY ‘language is
somewhat equivalent to specifying a list of
'subroutine calls. When the computer -executes _the .
program, it will call those subroutines as
instructed, not expending time in interpreting or

i checking for errors. - The progammer has to

b understand many details about the internal
“d functions ~of the computer " and is fully

' responsible for what happens. There - is no easy
way to find the errors and correct them. .

- A more reasonable approach to programming is
using a compiling system, that is, a system .to
translate the BASIC statements into subroutine -
calls and save them. When the compiled program =
j.e., a list of subroutine calls translated from
" ; BASIC statements - is called, the subroutines are
» executed as in an assembly program. There - are
_therefore two steps jnvolved in the process:

; compiling and running.
! The ADVANCED SOFTWARE BASIC COMPILING SYSTEM ;
(ASBCS) is a set of two programs: an EXTENDED |

e, i

‘ 1

et e e oo - e TR e N 1 T T T e YN s - il '
s Saih = ey e e - i
T oy =z Y TSI o e St g SR ks

BASIC program, the COMPILER, which transforms
BASIC statements into number codes, and an
ASSEMBLY program, the RUNNER, which executes
operations by calling a specific subroutine for
. each of those number codes. The RUNNER can be
- called by any vregular EXTENDED BASIC program.
The statements to be compiled are inserted as
BASIC lines after the last lines of the COMPILER
itself. The subroutines provided allow you to
execute the most important operations supported
by EXTENDED BASIC and, in addition, other
operations only available with ASSEMBLY..
Graphics are controlled by assigning values to
some specific variables. This results in the big
advantage of a compiled program over a Tregular
EXTENDED BASIC program: hundreds of times faster
graphics operations.- One disadvantage 1is that
you have to learn how these variables control the
graphics and keep track of them when programming.
This is also true for the rest of the computer
operations. The - programs produced by - the
COMPILER are much faster but less easy to write
than regular EXTENDED BASIC programs. .
Programming with the ASBCS provides you with
- very efficient ways to use the computer's memory.’
This is due to the fact that you work more
directly with the memory and that . the number of
reference tables used is reduced. Also, much
memory spacé-is saved by working with some of the
variables as one- and two-byte integer numbers
as compared with the rigid eight-byte real number
format used in EXTENDED BASIC. _
~ With a compiled program you can perform -the
most important operations available with the TI
- 99/4A, such as arithmetical operations, graphics,
including sprites, and logical operations. The
display is originally set to the GRAPHICS mode,
as in EXTENDED BASIC. However, with a single
instruction in the compiled ~program, it can be
changed to TEXT, MULTICOLOR or BIT-MAP mode.
Editing is done as with a regular EXTENDED

2

B e R e

kel

g

BASIC program. Once your ‘program is written,
the COMPILER compiles it, that is, assigns number
codes to each statement and stores these codes in
memory. During this compiling process, the

program will check the statements and, if it

finds an error, will issue an error messsage and
stop running. The error message will also
indicate the number of the line where the error
occurred.

After your program is compiled free of error,
you can then run it by calling the RUNNER with an
EXTENDED BASIC program or command. If an error
occurs at this stage, the program will once again
issue an error message indicating the line in the
compiled program where the error occurred. This
means that the capability to diagnose errors
available in EXTENDED' BASIC is maintained while
running the compiled program.

As you can see, the ASBCS is a compromise
between the speed and power of the ASSEMBLY and
the simplicity of BASIC. O0f course, you can
expend a considerable amount of money in hardware
and software, and/or the time to 1learn a new

programming language of a conventional and more

powerful system such as PASCAL or FORTH. But, if

' you want to take advantage of the equipment and

the knowledge you have accumulated so far, the
ADVANCED SOFTWARE BASIC COMPILING SYSTEM (ASBCS)
gives you a chance to do so. To make the most

“advantage of your computer, you should write a

part of your program in EXTENDED BASIC and
compiled subroutines using the ASBCS

write
for the

operations where EXTENDED BASIC is not fast "

enough for you.

' This manual is divided into six chapters.
Chapter one describes the characteristics of the
variables that can be used. In chapter two, the
statements' syntax 1is presented, including the
types of errors that can result when executing
them. Chapter three deals with compiling. The
instructions to link to a compiled program are

R e

TTRFALL TS

N

chapter five,
covered. Two
chapter six.
graphics in the

given in chapter four. In
character display.and sprites are
examples are discussed in
Instructions for handling - . :
BIT-MAP, MULTI-COLOR and TEXT modes are given 1n
the Appendix. In addition, the Appendix includes
some fundamental concepts and data about the
computer memory use and operations.

 restricted to W(),X()

1. VARIABLES

The variable names in the program to be
compiled are restricted to the letters from C
through V for single numeric variables. Names
for one-dimensional array numeric variables are
and Y(). The only name
permitted for a one-dimensional array string
variable is 2Z$(). The subscript of Z$() and YQ)
can not be zero.

Multidimensional array variables and
string variables are not supported.

The subscript of W() must have an integer
value from zero through 16383 and the values of
jts elements can be any integer from O through
255.

The sybscript of X() must be an integer value

single

from zero up to 12284 ,depending on the size of
the EXTENDED BASIC program that is calling the
compiled program, and the values of its elements

can be any integer from -32768 through 32767.

The values. of the single variables C through V
can also be any integer from -32768 through
32767. ,

The arrays Y() and 2$() are regular BASIC
variables
calling program. These are also the only two of
all the above mentioned variables that can be
modified by the EXTENDED BASIC calling program.

R S

v s e L T8

and have to be -dimensioned in the

A TR M A B o Ty

IRy

2. SYNTAX

With the ASBCS you can compile the most
important and useful EXTENDED BASIC statements.
Most of the statements generate the same oOT
similar operations when executed in EXTENDED
BASIC or when executed by the RUNNER as compiled

statements, so you can check the logic of your .

program before compiling it. However, a few
statements, after being compiled, will generate
operations not supported by EXTENDED BASIC when
executed by the RUNNER, and in those cases the
action generated is meaningless when executed in
EXTENDED BASIC. For example, the statement LET
B=BITMM, when executed by the RUNNER, sets the
display to BIT-MAP mode. However, if run in
EXTENDED BASIC, B and BITMM are two dummy
variables.

~ The subcripts of the arrays have to be integer
single variables. For examle, Y(N) and Z$(Q) can
appear in a statement, but W(1), 2z$(Y(c)) and

X(100) will generate a compiling error. -In -

addition, integer numbers from O through 31 can

appear in any statement.
The valid statements are " listed below. An

explanation of the. statement is given only when
the operation generated is
EXTENDED BASIC.

ARITHMETIC OPERATIONS

numeric variable=item-arithmetic operator-item

where item is a numeric variable or an integer,
number from O through 31 and arithmetic operator
is either +,-,%,/ orA. Examples of acceptable
statements of this type are: D=Y(B)+J and
X(C)=F*20

different from

e o sy S A v A B O T T 8 e g

-

,./”"

first numeric variable=second numeric variable
Examples: W(F)=R N=C
numeric variable=number

where number is an integer from -32768 hrough
32767. ‘Examples: K=10000 Y(J)=-301

numeric variable=RND

RND is a random generated number from -32768
through 32767. '

first numeric variable=ABS(second numeric vériable)

Non-integer values are rounded out before being
assigned to an integer variable.

For Example W(R)=31/4 makes W(R) equal to 8. The
numbers can be raised only to a positive integer
OTr zero power. ' .

ACCEPT AT(row,column):numeric variable

where row is a numeric variable or an intégér
from 1 through 24 and column is a numeric
variable or an. integer.from 1 through 24

in GRAPHICS mode, or through 40 in TEXT mode.
Assigns the ASCII code of the key pressed to the
variable and displays the character.

BREAK

Causes program to halt when encountered. :
Execution continues after any key is pressed.

CALL CHAR(character code,Z$())

e s — s

T AR Lo

FEdae gt 10720 1 S

CALL CLEAR

CALL COLOR(row,column,color code)
aséigns~color to box in MULTICOLOR mode. ' See
Appendix for insructions.

CALL COLOR(character code,Z$())
assigns sixteen colors to character in BIT-MAP
mode. See Appendix for instructions.

CALL JOYST(key unit, x return, y return)
Same as in EXTENDED BASIC but additionally
stores the status in the variable S. The status

information is used to check if the fire
button was pressed. -

CALL KEY(key unit,return variable,status variable)
CALL MAGNIFY‘(magﬁification factor)

CALL SCREEN (color code)
changes the screen color in Graphics mode and
the foreground and background colors in TEXT mode.
See Appendix for TEXT mode handling.

DISPLAY AT(row,column):Z$()

row and column as in ACCEPT.

S S

END

returns control to EXTENDED BASIC. And also
returns the line number of the END statement
plus 10 in the EXTENDED BASIC variable LINE.

IF relational expresion THEN line number

relational expression compares two variables or
a variable and an integer number from O through 31.

FOR control variable=initial value TO limit

STEP increment
same as in EXTENDED BASIC but the control
variable must be an single variable (C through
V). The initial value, the limit and the
increment can be numeric variables or integers
from 0 through 31.

GOSUB line number

GOTO line number

is the fastest operation, so go to

LET B=CPTCP*first address¥*second address*length

reads a memory segment starting at CPU RAM first
address -and writes. the segment starting at CPU
second address; length is the number of bytes in
the segment. For example, if the current values
of C,D and E are 0, 10000 and 2000, the statement

LET B=CPTCP*C*D*E

e e

g e e

+ ey

-

Bt aisiimirbinre wparce i AR SRR

reads the CPU RAM segment from address O through
1999 and writes it on the CPU RAM segment from
address 10000 through 11999. Caution: improper
use of this statement may cause the computer

to "lock up". See the MEMORY USE section of

the Appendix.

LET B=CPTVD*VDP address*CPU address*length

writes a memory segment from .CPU RAM to VDP RAM.

LET B=VDTCP*VDP address*CPU address¥*length

writes a memory segment from VDP RAM to CPU RAM.

LET B=STTCP*CPU address*ZZ(single variable)

writes the string Z$(single variable) on CPU RAM.
For example, if the values of X(N) and Z2$(P) are
10000 and "ABC" respectively, the statement

LET B=STTCP*X(N)*ZZ(P)
will make the bytes from 10000 through 10003
equal to 3,65,66 and 67. ‘ : '
LET B=CPTST#CPU address*ZZ(SingleVVariable)
makes Zé(single variable) equé& to a segment of
CPU RAM. For example, if the bytes from CPU address

14000 through 14004 are 4,65,65,65 and 65, '
and the value of Y(D) is 14000, the statement

Py PRSI U

LET B=CPTST*Y(D)*ZZ(K)

will make Z$(K) equal to "AAAA".

10

. e
S——

LET B=GRAPM

sets the display to GRAPHICS mode.

LET B=BITMM

sets the display to BIT-MAP mode. }'

LET B=TEXTM

sets the display to TEXT mode.

LET B=MULTM

sets thé display to MULTICOLOR mode.

LET B=RESET

clears the subroutine call and FOR-NEXT stacks.
The first time you link to a compiled program
this must be the first statement executed. You
can leave the compiled program and return to it
at any line. If this statement is not executed
when returning from EXTENDED BASIC, the sequence
of GOSUB-RETURNs'and FOR-NEXTs is mantained.
This means that you can treat your EXTENDED
BASIC program as a subrotine of your compiled
program.. '

NEXT control variable

11

2 AT et e > T

e e o gy e

PRINT ,,,,

- scrolls the screen up a number of lines equal
to the number of commas plus 1.

RANDOMIZE /seed/

the optional seed is an integer from -32768
through 32767.

RETURN

S I S

3. COMPILING

2400, "initial line"

“arrays W() and XQ)

Load the COMPILER from cassette or disk.
Write the program you want to compile after the
last line of the <COMPILER. The "program to be
compiled can have up to 680 1lines. Next, input
the command

>RES initial line

If you want the first line of your program to Dbe
must be 100. Otherwise,
subtract 2400 from the number you want for the
first line and add the difference to 100 to
calculate "initial line". For example, if you
want the first line to be 3000, "initial 1line"
should be 700. The highest and lowest values
allowed for the line.numbers are 2400 and 9190.

You can check th&’ syntax and logic of your
program by running it, if the subscripts of the
aren' too high . To run,
input the command

>RUN line number

where ™line number" is the first 1line of your
program. Even if you can not take or choose to
skip this step, your program is now ready to be
compiled. § : ‘

Input the RUN command. When the input prompt
(?7) appears type COMPILE (or just C0) and press
C¢ENTER>. Next input the numbers of the first and
last 1lines you want to have compiled. The
COMPILER will then start working and will display
the number of the line being compiled.

1f the COMPILER finds an error, it will issue
an error message indicating the type of error and
the line number where it occurred, and will stop
running. - The error messages are the following:

13

BAD. LINE NUMBER
BAD STATEMENT
MEMORY FULL

BAD VALUE

See the Appendix for descriptions of these

messages. Correct the error and begin compiling
again, starting with the 1line just corrected.
Repeat the process until the program 1is free of
error. : _
When the compiling is done, the input prompt
will appear again. If you want to save the
compiled code type SAVE (or just SA). You will
then be asked for the first and last line numbers
of the program and the title you - wish to assign
to it. The compiled code is saved as sequential
and internal records which are 192 in 1length.
Each record contains one string 191 long.

After the code is saved, the prompt will
appear. If you want to load the RUNNER, or any

any compiled program previously saved by the"

COMPILER, input LOAD (or just LO). When 1loading
the RUNNER, the first and last addresses of the

memory segment where it is stored and the title

RUNNER will be dlsplayed. Type Y if you wish to
continue loading, or N otherwise. When loading a

program, its first and 1last 1line numbers are.

displayed instead of addresses but otherwise the
procedure is the same as when loading the RUNNER.
At this point it is advisable to 1list your
program on paper if you have a printer and then
save it on diskette or cassette tape. Of course,
the COMPILER and your program are now saved as
just one program. To .stop the COMPILER just type
STOP (or just ST). Zge b :

14

P B

Now you should see what your compiled program

4, RUNNING

" does by linking to the RUNNER while the COMPILER
is running, assuming that you have previously

loaded the RUNNER. Input LINK (or just LI) and
you will be asked for the 1line number of the
first statement to be executed. You can specify
any compiled line number. You must be careful
not to specify a line number not compiled because
the results will be unpredictable. After this,
the RUNNER takes over and executes your compiled
code,

If you press <BACK> (FCTN 9), control is
returned to EXTENDED BASIC and will generate

"RUNNER error number 12. Pressing <QUIT> will do

the same that in EXTENDED BASIC but your compiled
code will remain in memory.

" If an error occurs, control is passed back to
EXTENDED BASIC and an error message Wwill be
displayed including the line number at which it
occurred (See the Appendix for an explanation of
error messages). If your compiled program hasn't
written on top of the COMPILER, the input prompt
will appear again and you can proceed to correct
the error. If the COMPILER code has been

" altered, it is best to reload it from cassette or.
~ diskette. If your compiled program runs free of

error, and a complled END statement 1is found,
control is also returned to EXTENDED BASIC and
the prompt appears again.

In order to link your EXTENDED BASIC program
to your compiled program, you have to include the
LINK subroutine in it. The subroutines LINK,

SAVE -and LOAD are supplied together as one

program saved following the COMPILER. With LOAD
and SAVE you can load and save compiled programs
or data, while your EXTENDED BASIC program is
running. Instructions on how to use them are
given in the program inserted as REMARKS.

15

2 . L

.
ey i < mepee RER e e S A e o e S g e e

5. GRAPHICS

There are two major differences between a
regular EXTENDED BASIC and a compiled program
with respect to the screen display. First of
all, a compiled program does graphics operations
mainly by assigning values to specific elements
of the array W(), instead of calling subroutines.
Secondly, the compiled program - can access TEXT,
MULTICOLOR and BIT-MAP display modes, while
GRAPHICS is the only mode available in EXTENDED
BASIC. In this chapter, _graphics operations in
GRAPHICS mode are discussed. See thee Appendix
for the information about ‘the other display
modes. & b :

5.1 Character Definition'

In a compiled program, the characters are
defined by the statement

CALL CHAR(character code,Z$())

The length of the string Z2$() can be from 2
through 240 and _defines up to 15 consecutive
characters. If the length is not an even number,
the last character of the string ijs ignored. - If
the string is 1less than 16 characters, the
remaining portion of the pattern is not changed.

For example, if character 128 was previously
defined as “"FFFFFFFFFFFFFFFEF", C is 128 and
z$(D)="00000", execution of the statement CALL
CHAR(C,Z$(D)) will make the pattern of character
128 "O0OOOFFFFFFFFFFFF". - .

'

5.2 Character Color

"The colors for the characters are specified by
W(2064) through W(2077). Thus, W(2064) specifies

16

P

the colors of the characters 32 through 39,
W(2065) ~ specifies colors for characters 40
through 47 an so on. W(2077) specifies colors

for characters 136 through 143, To assign a
color to a set of characters, make the

corresponding W() equal to the foreground color
code times 16 plus the background color code
minus 17, or 16*FCC*16+BCC-17. For example, if c
is 2064, the statement W(C)=23 makes the colors
of the first character set black on cyan, since 2
(black) times 16 plus 8 (cyan) minus 17 is 23.

5.3 Character Display

W(0) through W(767) specify the characters

‘displayed on the 768 positions of the screen,

W(0) through W(31) make up the first oW, W(32)
thpough_W(GB) the second row and so on. W(736)
through W(767) make up row 24. To . display a
character, make the W() corresponding to the
desired position equal to the character code plus
96. For example, if you make W(34) equal to 161
(65+96), . character 65 (normally the letter A)
will appear on the third column of the second

- TOW.

5.4 Sprite Position, Pattern and Character

W(768) through W(879) specify the vertical and
horizontal positions, character value and color
(these four are called the sprite attributes) of
the 28 sprites. W(768) through W(771) are the
dot-row, dot-column, character code plus 96 and
color code minus one of sprite #l. For example,
making these four values 40,50,161 and 15, will
set sprite #1 to dot-row 40, dot-column 50,
character value 65 and white color. w(772)
through W(775) are the attributes of sprite #2,
and so on up to W(876) through W(879).

17

As sprites move, the the elements of W() that
specify positions, change automatically.. In
order to move sprites with the compiled program,
they have to be initially defined in EXTENDED
BASIC with a velocity (even if the velocities are
Zero). '

5.5 Sprite Velocity

The velocities of the 28 sprites correspond to
the elements W(1920) through W(2029). W(1920)
and W(1921) are the row- and column-velocity of
sprite #1. A positive velocity is a value from
zero through 127. A negative velocity is W()
minus 256. For example, if W(1920) is 3 and
W(1921) is 240, the row- and column-velocity of
sprite #1 are 3 and -16 respectively. W(1924)
and W(1925) are the velocities of #2, W(1926) and
W(1927) the velocities of #3. and so on up to
W(2208) and W(2209) for #28.

18

i W

P

6. EXAMPLES

The following example demonstrates the .speed
with which a compiled program can modify the
screen display. The screen content 1is saved on
memory and you can subsequently clear or restore
the screen content by pressing 3 or 5. It will
return to EXTENDED BASIC by pressing any other
key.

2400 LET B=RESET

2410 C=-24576

2420 D=768

2430 LET B=V.1TCP*Q*C*D
2440 CALL KEY(1,I,S)
2450 IF S=0 THEN 2440
2460 IF I=8 THEN 2510
2470 IF I=10 THEN 2490
2480 END

2490 LET B=CPTVD*0*C*D
2500 GOTO 2440

2510 CALL CLEAR

2520 GOTO 2440

‘Type the statements -after 1line 2390 of the
COMPILER, compile from 2400 to 2520 and 1link to
line 2400. Then see how fast you can clear and
restore the screen. Indeed, ‘this is how . a
program can change frames so quickly that it
creates the impression of movement.

Line 2400 clears both the subroutine call and
FOR-NEXT stacks. In this case it is not really
necessary because the program doesn't use the

- statement GOSUB or FOR-TO, but it should always

be included in order to get into the habit of
doing so. _ , .

Lines 2410 through- 2430 'save the screen
content (VDP -RAM from zero through 767) on CPU
RAM starting at address -24576. Lines 2440 and
2450 halt the program until any key is pressed.

e e £ S < o e i A o e e

19

s NP S i S e

i

L

Lines 2460 and 2470 select the operation. Line
2480 returns control to EXTENDED BASIC. Line
2490 restores the screen content. Line 2510

After returning to EXTENDED
LINE should be
input the command

clears the screen.
BASIC, the value of the variable
2490, Stop the COMPILER and
PRINT LINE to check.

This next example demonstrates
sprites in a compiled program. One
horizontally at the top of the
randomly selected speed. A second
from the bottom to the top of the
any key is pressed. If a coincidence occurs,
both sprites will stop until you press a key
again. Pressing <BACK> (FCTN 9), will return
control to EXTENDED BASIC.

the wuse of
sprite moves
screen with a
sprite moves
screen after

2400 LET B=RESET. 2540 CALL KEY(5,R,S)

2410 C=768 2550 IF S=0 THN 2540
2420 D=769 2560 W(I)=156
2430 E=772 2570 IF W(E)>16 THEN 2650
2440 F=773 2580 M=W(D)-W(F)
2450 H=1921 2590 M=ABS(M)
2460 1=1924 2600 IF M>8 THEN 2650
2470 K=129 2610 W(I)=0
2480 CALL CLEAR - 2620 W(H)=0
2490 L=RND 2630 BREAK

2640 GOTO 2480 £
2650 IF.W(E)<6 THEN 2520
2660 GOTO 2570

2500 L=ABS(L)
2510 W(H)=L/K
2520 W(E)=180
2530 W(I)=0

Type the program after line 3990.
1210 of the COMPILER to

Modify 1line

1210 CALL SPRITE({#1,65,2,10,10,0,0,#2,66,2,182,
128,0,0): :CALL LINK("RUNNER" Y() Z$() LINE, ERR,
VAR()) '

Now try to intercept A
Press <BACK> to

Compile and link to 2400.
with B by pressing any key.

20

et

———

‘any key is pressed.

return to the COMPILER. The message

BACKPOINT IN line number

will be displayed.

Lines 2490 through 2510 assign a random column
velocity to sprite #1. Line 2530 makes the rTow
velocity of sprite #2 zero. Lines 2540 and 2550
wait until any key is pressed. Line 2560 makes
the row velocity of sprite #2 equal to -100.
Lines 2570 through 2600 check for coincidence
between the-sprites. Lines 2610 and 2620 stop
the sprites. Line 2630 halts the program unFil
Line 2650 checks 1if sprite
#2 is close to the top of the screen.

T

C.

e s

D.

APPENDIX
Page
VALID STATEMENTS «voeseoseerasecnssss23

EFFECTS OF W() ON SCREEN DISPLAY
(GRAPHICS MODE)'I.ll.l‘.‘l'..lllza

ERROR MESSAGES o..a---o.----..-&-..--zs

TEXT MODE OOIll.l;..llll.'....l.lll.lz7

BIT—MAP MODE_.o-..-.-_-.-.-.co--.'o...zg

M[]LTICOLOR MODE -00--lo.'litooillctoo‘c..33
MEMORY USE 'l'l.ll_.".t‘».,..l»...!l..l..35

WORD AND BYTE OPERATIONS seseseesosee3?

APPENDIX A

VALID STATEMENTS

wyar" stands for numeric variable or O through 31.

array subscripts must be single integer variables.

ARITHMETIC OPERATIONS
var=var(+*/A)var
var=var
var=number
var=ABS(var)
var=RND
ACCEPT AT(row,column):var
BREAK
CALL CHAR(character code, Z$())
CALL CLEAR
CALL COLOR(row,column,color code) (MULTICOLOR)
CALL COLOR(code,Z$()) (BIT-MAP)
CALL JOYST(key unit,x,y) S=status
CALL KEY(key unit,return var,status var)
CALL MAGNIFY(magnification factor)
CALL SCREEN(color code)
DISPLAY AT(row,column):Z$()
END :
FOR control var=initial var TO limit STEP inc.
GOSUB 1line number
GOTO line number g
IF relational expression THEN line number
LET B=(CPTCP,CPTVD,VDTCP)*address* vraddress*length
LET B=(CPTS, STCP)faddress*ZZ(var)
LET B=(GRAPM,BITMM, TEXTM, MULTM, RESET
PRINT ,55000e00s :
RANDOMIZE /seed/
RETURN

e o s e 1 ————. P TN A I A g

23

e - e e - e P by e T Y T e e Sy ST e TR o

APPENDIX B

EFFECTS OF W() ON SCREEN- DISPLAY
(GRAPHICS MODE)

0
Characters on the Screen
(768 positions)
767
768 ’

Sprite Dot-Row, Dot-Column,
Pattern and Color (28 Sprites)
879

3

880
Don't use these

1023
1024

Changing these will change

the Patterns (112 Characters)
1919
1920

_ Sprite Velocities
2047
2048

Character Colors :
(14 sets of 8 Characters)
2079 . -
2080 _
. No effect on the screen
13567
13568
Lost if disk used

16383

24

Y S -

é—

£ " e e T e N T T VR e e T ez e s ————an

APPENDIX C
ERROR MESSAGES
1. COMPILING ERRORS

BAD LINE NUMBER
- Lines are not numbered in increments of ten.
- Line number less than 2400 or greater than
9190.
BAD STATEMENT
- Invalid statement found.
MEMORY FULL
" - There is no more room for object codes.
BAD VARIABLE - :
- An illégal variable name. i .
- A number is less-than 0 or greater than 31l.
BAD VALUE '

- Specified number is not an integer from -32768

through 32767.

2. RUNNER ERRORS

Number Description

1 BAD ROW VALUE

2 BAD COLUMN VALUE

3 OVERFLOW. Overflow in an arithmetic
operation.

4 RETURN WITHOUT GOSUB

5 NEXT WITHOUT FOR :

6 TOO MANY FOR-TOS. More than five loops
were left open and an attempt to open a
sixth one was made.

7 TOO MANY GOSUBS. The number ofGOSUBs

' found exceeds the number of RETURNs found

by 11. B _

9 BAD CODE. Unrecognizable code found by

' the RUNNER. ‘

11 BAD VALUE. Attempt to make an item
have an unacceptable value. For example,
trying to make an integer single variable
less than -32768 or greater than 32767,
a key unit less than zero or greater than
5, etc. :

12 BACKPOINT

1f an error occurs, the variable - ERR 1is the
error number, otherwise it is zero. The variable
LINE is the number of the 1line where the error
occurred plus 10. Also, the variables C through
V are passed to EXTENDED BASIC as the array
VAR(). Thus , VAR(1) will have the value of C,
VAR(2) the value of D and so on up to VAR(20),
the value of V.

26

.

VDS

‘W(3000) through W(10999) are the

APPENDIX p
. TEXT MODE

In TEXT mode, the display is 40 columns by 24
rows. You can not use sprites. If you want
switch back to the GRAPHICS mode you have to save
the values of the array W(), from 768 through
959, and restore them before or after
back to GRAPHICS mode. You have to .do this for
the other modes too, if your program changes
these values. You can switch to TEXT mode with
the statement LET B=TEXTM. ’

The colors of all the characters are the same.
The background color 1is transparent. The
foreground and screen colors are set with the
statement o : ’

CALL SCREEN(codg)

The code 1is the foreground color code ‘times
sixteen plus the screen color code minus 17. For
example, the statement

CALL SCREEN(27)

will make the screen black and the characters
light yellow (16%*2+12-17=27). You can define the
characters as in GRAPHICS mode, but the 1last dot
of each row will be ignored. '

The .program discussed below is an example of
the TEXT mode application. Actually, it is a
rudimentary text editor. It edits a text of 100
lines of 80 characters each. It assumes that
character codes

plus 96. Part of the text 1is .displayed on the
screen which can be scrolled up, down and
sideways. The program 1is included after the

COMPILER, so you can try it right away. After
the COMPILER and the RUNNER are loaded, compile

27

swithcing

e T T AT Y e YT YL AN e 2 e

‘borders,
_ Pressing ERASE (FCTN 3) returns control to

2720 accept one

from line 2400 through 3280. Then 1link to line

2400, Use the arrow keys to move and any other
key to type. When the cursor reaches the screen
scrolling is automatically done.

EXTENDED BASIC. -
It works as follows. Line 2400 clears the
subroutine call and FOR-TO nesting stacks of the
compiled program. Lines 2410 through 2470 save
W(768) through W(959). Line 2480 sets the
display to TEXT mode. K points to the screen
position and L points to the corresponding
position on the text. Line 2640 stores ‘the
character under the cursor. Lines 2650 through
: character and choose
corresponding action. Lines 2740 through 2760
move oiie line up on the text. Lines 2800 through
2820 make the cursor advance one space to the
right. Lines 2890 through 2910 move the cursor
to the left. Lines 2980 through 3000 move the
cursor down. Lines 3090 through 3180 scroll the
screen either way. Line 3200 switches back to
GRAPHICS mode. Lines 3210 throguh 3270 restore
W(768) through W(959). Line 3280 returns control

~ to EXTENDED BASIC.

Notice that 1line 3140 moves 40 consecutive
characters to CPU RAM, and that 1line 3180 moves
the 24 lines to the screen. '

The scrolling can be made faster by making a
few changes, like storing the text in the array
X(). O0Of course, to make the editor more
versatile, more operations, such as deleting and
inserting, have to be included.

ey S

APPENDIX E
BIT-MAP MODE

In this mode you can define up to 768
characters, You can also use sprites, but their
velocities will be always zero - in other words,
they don't move automatically. The screen is 24
rows by 32 columns as in GRAPHICS mode. Each
character.can have up to 16 different colors. To
define a character just use the statement

CALL CHAR(code,Z$())
where code can be from zero through 767. - W(6144)

through W(6911) are the characters displayed on
the screen. *The screen position is

61l44+(row-1)*32+col-1. The screen is divided

into three sections of 8 rows each. - Characters
0 through 255 can 'be diplayed only in the first
8 rows, by simply making the corrsponding W()
equal to the character code, For example, to
display character 4 in the second row and third
column, make W(6178) =equal to &4 (since
6144+(2-1)*32+3-1=6178). ,
- Characters 256 through 511 can only be
displayed on rows 9 through 16, by making W()
equal to the character code minus 256, For
instance, to display character 300 on row 10 and
column 5, make W(6436) equal to.44. '
Characters 512 through 767 - can only be
displayed in rows 17 through 24, - by making W()
equal to the code minus 512, For example, to
display character 600 on rTow 17 and eolumn 1,

- -make W(6656) equal to 88. See the table below

for the effects of W() on the screen display.
‘'To assign the sixteen colors to a character
use the statement

CALL COLOR(code,Z$())

\H

where code can be from O through 767. The string
7$() specifies the colors in a manner similar to
the way it specifies shapes. The first character

of the string 2$() specifies the color of the

dots.that are on in the top eight dots. The
second character of Z$() specifies the color of
the dots. that are off in the same eight dots.
The color code is now from O through F instead of
from one throug 16. For example, black 1is one
instead of the regular 2, and white is F instead
16. Therefore, for instance, to set the top
eight dots of a given character, dots on light
green and dots off dark yellow, the first two
characters of Z$() must be 3 and A (corresponding
to & and 11). The following ' two characters in
2$() define the color .of the next 8 dots below
and s0 on. ~ For example, if
Z$(F)="1010101010101010" is wused to assign a
color to a character, all the dots on will be
black and all the.dots off will be transparent.
The program example below. fills the screen
with a character, defined by Z$(l) for shape and
2$(2) for color. To try it, type it in and
insert in 1line 1210 of the . COMPILER the
expressions for Z$(1l) and Z$(2). For example

1210 Z$(1)="FOFOFOFOFOFOFOF0"::Z$(2)=60123456789'

ABCDEF': :CALL LINK("RUNNER",Y(),Z$(),LINE,ERR,VAR())

Then, type the program, compile and link to it.

2400 LET B=RESET 2500 NEXT I

2410 LET B=BITMM 2510 C=6144

2420 C=1 ‘ a . 2520 D=6911

2430 F=2 . 2530 FOR C=C TO D
2440 D=0 . - 2540 W(C)=0

2450 E=256 2550 NEXT C

2460 FOR I=1 TO 3 2560 CALL KEY(5,K,S)

2470 CALL CHAR(D,Z$(C)) 2570 IF S=0 THEN 2560
2480 CALL COLOR(D,Z$(F)) 2580 LET B=GRAPM
2490 D=DHE 2590 END

30

P W

PSS

It works as follows. Line 2410 sitwches to
BIT-MAP mode. Lines 2420 through 2500 define the
shape and colors of characters 0, 256 and 512.
Lines - 2510 through 2550 make W(6144) through
W(6911) (all the creen positions) zero. This
means that the first eight rows contain character
zero, the next 8 rows character 256 and the next
8 character 562. Lines 2560 and 2570 stop the
program until " any key is pressed. Line 2580
switches back to GRAPHICS mode. Line 2590
returns control to EXTENDED BASIC.

31

B

et e

EFFECTS OF W() ON SCREEN DISPLAY) . , APPENDIX F
: (BIT-MAP MODE) ' ’ ' :
' MULTICOLOR MODE

o ' ! In this mode you can use sprites. The display
§ 768 Character definitions ' 1 is divided into 48 rows of 64 boxes. Each of the
§ (each takes 8 values) 3072 boxes has one color. To set the color of a
: 6143 ' box use the statement
; 6144 CALL COLOR(row,column,color code)

i Characters on the first
1 eight rows of the screen For example, the statement
6399 A . A
e === CALL COLOR(10,20,15)

6400 : v '

Characters on rows 9 through 16 will set to white the box at row 10 and column

6655 : . 20. ; : .

5 - . The table below..shows how the W() values

6666 ‘ affect the screen display in this mode.

L " Characters on rows 17 through 24
] 6910

6911 . ;

- No effect on the screen

8191 : ;

1] :
: 8192 .
. 768 Character colors
] (each color definition
takes eight values)

14335 ' : i

------ s 7

14336 i

No effect on the screen ! ~
Lost if disk is used ’
16383 T '

S A s s e

32 | : 33

\
e e e et R e it i el R DR e e T e e e e

B e o - R N 5 e iy A S o g oy A

EFFECTS. OF W() ON SCREEN DISPLAY

(MULTICOLOR ‘MODE)

0
Don't use these
767
768
Sprite dot-row, dot-column,
patteern and color
879 '
880
Don't use these
1919
1920
Sprite velocities
2047
2048
Don't use these
W(2048) through W(2079) must
be saved if you want to keep
the GRAPHICS character colors
3583 ' e '
3584 ,
' No effect on the screnn
W(13568) through W(16383)
. are lost if disk is.used
16383

34

e e e A

e s e Sy R ———

APPENDIX G
MEMORY USE

In order to make better use of the ASBCS, you
will have to become familiar with a few aspects

of the memory organization of your computer,

specifically with the segments of memory where
your compiled program and data are stored.

Think of the computer memory as a series of
labelled boxes containing informaion. The box's
label is its address and the information inside
is its content value. Both the address and. the
content value are numbers. Each of these boxes
is called a byte. For example, if we say that
the byte'at. address 10000 has a value of 7, this
means thatthe box Tabelled 10000 has the number
7 inside,

. Therefore, for our purposes, the computer
memory is a series of bytes. You will only have
to be concerned with the Random Access Memory

(RAM). This is the part of memory which can be

written to, or read from, by any program, In
other words, you can change at will the content
value of each byte. There are two types of RAM

in your computer, one is the Central Processing

Unit RAM (CPU RAM) and the other is the Video
Display Processor RAM (VDP RAM). Two segments of
CPU RAM are in the Memory Expansion, one from

adddress 8192 to 16383 (8192 bytes) and the other

from address -24576 to -1 (24576 bytes). The VDP
RAM is in the console from address 0 to 16383
(16384 bytes). :
The CPU RAM is used in the following manner.
The RUNNER program is loaded on CPU RAM segment
from address 10272 to 12973. The code numbers of

"the compiled program are stored from CPU RAM

addresses 12974 up to 16373 (up: to 3400 bytes).
(Since each BASIC statement is compiled as five
bytes, you can compile up to 680 BASIC 1lines.)

i e s g

it bty

Memory Expansion CPU RAM segment from -24576 to
_1 contains the main part of your EXTENDED BASIC
program and free space which you can use to store
data. - & : -

The VDP RAM is used in the following manner.
The lower addresses contain the information that
controls graphics. The higher addresses contain
the string variables of your Extended Basic
program.

_Use the SIZE command to find out what memory
spaces you can use. The VDP RAM space from
address zero, through the address equal to the
amount of *“BYTES OF STACK FREE", is available for
your use. The CPU RAM segment that you can use
starts at address —24576. The number of bytes of
the segment is the number of bytes given by the
SIZE command as "BYTES OF PROGRAM SPACE FREE".
Making changes. on the memory content outside
these segments will produce unpredictable
results. ‘

The elements of the array W() are the values
of the bytes in VDP RAM. The value of a byte is
an integer number " from zero through 255. Two
consecutive bytes, the first byte having an even
address, are called a word. The value of a word
can be an integer from -32768 hrough 32767. The
variables from C through V are words stored at
addresses from 10668 through 10707. C 1is the
value of the word at address 10668, D is the word
at 10670 an so on. V is the word at 10706.

The elements of X() are. also words and are
stored starting at address -24576. Thus, W(0) is
at addresses -24576 and -24575, W(l) at -24574
and 24573 and so on until the end of the
available space.) :

36

e+ e T, e - e TR (4 b A £ e 4 S e g
. e 4 Sy T A A4 R L i T R W

APPENDIX H

WORD AND BYTE OPERATIONS

Let's call the first and second byte of a
word, Bl and B2. Let's call the value of a word
WV. Bl,B2 and WV are related in the following
fashion

WV=B1*256+B2 if B1%256+B2€32768 and
WV=B1%*256+B2-65536 otherwise.

For example, if, in a word, Bl and B2 are 100 and
200, WV is 25800. If Bl and B2 are both 200, WV
is -14136. -

This relation can be used to move information

between VDP RAM (W()) and CPU RAM (X()). For
example, if you want Bl and B2 of X(0) be equal to
the W(0) and W(1), you can do this

Cc=0 :
=-24576
LET B=CPTVD*Q*D*2

As an application of these relations,

- consider the following example. Suppose that you

want to place the character 65 .in all positions
of the screen. All you have to do- is make W(0)
through W(767) (all the screen positions) equal

to 161 (65+96). You can do this by the following

lines

2400 LET B=RESET
2410 D=767

2420 FOR C=0 TO D
2430 W(C)=161
2440 NEXT C

2450 END

The same operation will be done faster in
EXTENDED BASIC!. The reason being that assigning

37

values to W(), which is equivalent to moving
bytes to VDP RAM, is relatively slow. The same
task can be accomplished faster by moving all the
information from CPU RAM to VDP RAM as a block.
The example below does just that:

2400 LET B=RESET
2410 D=383 ol

2420 FOR C=0 TO D

2430 X(C)=-24159

2440 NEXT C

2450 C=-24576

2460 D=768

2470 LET B=CPTVD*0*C*D
2480 END

Lines 2410 through 2440 set the bytes from CPU

RAM -24576 through -23809 (768 bytes) equal to
161 (since 161%256+161-65536=-24159). Line 2470
moves the 768 bytes to the screen positions of
VDP RAM. : .
The capability of moving blocks of information
around is what gives a program speed. The more
statements of this type you use, the faster the
resulting action will be. i :

38

— st e et Ay

A —— PSR P RE BT

Please make the following changes in
the COMPILER programs

LINE CHANGE T0
130 "“COSAOLLIST" “COSALOLIST"
140 “SINTAX" "SYNTAX"
1810 32767 2170

2240 32767 390

We apologize for the inconveniences
and thank you for your understanding.

